Tuesday, 2 June 2020

Noise Test Parameter Optimization

In short, this is a new feature that allows us to optimize strategies across noise adjusted data series as opposed to the traditional method of optimization which only optimizes across the single historical price series.

The problem we face is the historical data is merely only one possible path of what *could* have happened. We need to prepare ourselves for the probable future not the certain past. In order to do this, we can generate synthetic price series that have altered amounts of noise/volatility than the actual historical data. This provides us with a rough sample of some alternate realities and potentially what can happen going forward. This is the exact type of data that can help us build more robust strategies that can succeed across whatever the market throws at us – which is our end goal in all of this, right?

Let’s look at a Noise Test Parameter Optimization (NTO) case study to show exactly how it works…


I have built a strategy from 2004 to 2016 that does quite well. The strategy’s performance over this period is shown below…

Now, if we right click on the strategy and select optimize, we can generate a sensitivity graph that shows how our strategy performs as we alter some parameters. This is done on the original historical price data with no noise adjusted data sample added (yet). We simply retrade different variations of parameter settings on the single historical price data and plot the respective performances. This is how most platforms allow you to optimize parameters and I want to show how misleading it can be to traders. The rule I’ve optimized had original parameter values of X = 9 and Y = 4 (black arrow). The sensitivity graph is shown below. Each plot consists of three points: parameter 1, parameter 2 and the resulting profit.


Build Alpha: We can see the original parameters are near a sensitive area on the surface where performance degrades in the surrounding areas. Performance drops pretty hard near our original strategy’s parameters which means slight alterations to the future price data’s characteristics can degrade our strategy’s performance quite a bit. Not what we want at all and, as we all know, there will be alterations to future price’s characteristics! How many times has a backtest not matched live results? Perhaps more robust parameter selection can help

The more robust selection using the typical simple optimization method on the historical data shows we should probably pick a parameter more near X = 8 and Y = 8 (pictured arrow below). This is the traditional method taught in textbooks, trading blogs, etc. We optimize on the single historical data then find a flat/non-peaked area close to our original parameters and use those new parameters.

However, if we run BuildAlpha’s Noise Test Optimization with up to 50% noise alterations and 50 data samples (green box below), we see a much different picture. What this does is, instead of optimizing on one historical path we now optimize across the one historical path AND 50 noise altered data series. The sensitivity graph shows a much different picture when optimized across the 51 data series. We are less concerned with the total profit and loss but rather the shape of the surface…

Originally Posted: http://buildalpha.com/noise-test-parameter-optimization

0 comments:

Post a Comment